Adjoint-based Adaptive Finite Element Method For The Compressible Euler Equations Using Finite Calculus

نویسندگان

  • Mohammad Kouhi
  • Eugenio Oñate
  • Dimitri Mavriplis
چکیده

In this paper, an adjoint-based error estimation and mesh adaptation framework is developed for the compressible inviscid flows. The algorithm employs the Finite Calculus (FIC) scheme for the numerical solution of the flow and discrete adjoint equations in the context of the Galerkin finite element method (FEM) on triangular grids. The FIC scheme treats the instabilities normally generated in the numerical solution of the fluid equations through adding two stabilization terms, called streamline term and transverse term, to the original central-based discretized formulation. The non-linear system of equations resulting from the flow problem is solved implicitly using a damped Newton’s method accompanied with the exact Jacobian matrix. A defect corrected scheme is implemented to iteratively solve the linear system of equations related to the adjoint problem benefiting from the transpose of the Jacobian matrix. At each iteration, the linear systems of equations resulting from the fluid and adjoint problems are solved using a preconditioned GMRES method. Having calculated the error of a specified output functional locally, an h-refinement methodology based on the element subdivision is performed to refine the candidate elements. The quality of the numerical results proves the capability of the presented approach for the adjoint-based error estimation and mesh adaptation problems in different flow regimes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Formulations for Finite Element Models of Functionally Graded Beams with Piezoelectric Layers

In this paper an overview of functionally graded materials and constitutive relations of electro elasticity for three-dimensional deformable  solids is presented, and  governing equations of the Bernoulli–Euler and Timoshenko beam theories which account for through-thickness power-law variation of a two-constituent material and piezoelectric layers are developed  using the  principle  of virtua...

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics

Error estimation and control are critical ingredients for improving the reliability of computational simulations. Adjoint-based techniques can be used to both estimate the error in chosen solution outputs and to provide local indicators for adaptive refinement. This article reviews recent work on these techniques for computational fluid dynamics applications in aerospace engineering. The defini...

متن کامل

A Space-time Discontinuous Galerkin Finite-element Discretization of the Euler Equations Using Entropy Variables

Abstract. A method to numerically solve the Euler equations for fluids with general equations of state is presented. It is based on a formulation solving the conservation equations for either pressure primitive variables or entropy variables, instead of the commonly used conservation variables. We use a space-time discontinuous Galerkin finite-element discretization, which yields a highly local...

متن کامل

An Adaptive Simplex Cut-Cell Method for Discontinuous Galerkin Discretizations of the Navier-Stokes Equations

A cut-cell adaptive method is presented for high-order discontinuous Galerkin discretizations in two and three dimensions. The computational mesh is constructed by cutting a curved geometry out of a simplex background mesh that does not conform to the geometry boundary. The geometry is represented with cubic splines in two dimensions and with a tesselation of quadratic patches in three dimensio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016